Global Stability Analysis for Complex-Valued Recurrent Neural Networks and Its Application to Convex Optimization Problems

نویسندگان

  • Mitsuo Yoshida
  • Takehiro Mori
چکیده

INTrODUCTION Recurrent neural networks whose neurons are fully interconnected have been utilized to implement associative memories and solve optimization problems. These networks are regarded as nonlinear dynamical feedback systems. Stability properties of this class of dynamical networks are an important issue from applications point of view. ABSTrACT Global stability analysis for complex-valued artificial recurrent neural networks seems to be one of yet-unchal-lenged topics in information science. This chapter presents global stability conditions for discrete-time and continuous time complex-valued recurrent neural networks, which are regarded as nonlinear dynamical systems. Global asymptotic stability conditions for these networks are derived by way of suitable choices of activation functions. According to these stability conditions, there are classes of discrete-time and continuous-time complex-valued recurrent neural networks whose equilibrium point is globally asymptotically stable. Furthermore, the conditions are shown to be successfully applicable to solving convex programming problems, for which real field solution methods are generally tedious. On the other hand, several models of neural networks that can deal with complex numbers, the complex-valued neural networks, have come to forth in recent years. These networks have states, connection weights, and activation functions, which are all complex-valued. Such networks have been studied in terms of their abilities of information processing, because they possess attractive features which do not exist in their real-valued counter-Generally, activation functions of neural networks crucially determine their dynamic behavior. In complex-valued neural networks, there is a greater choice of activation functions compared to real-valued networks. However, the question of appropriate activation functions has been paid insufficient attention to in the past. Local asymptotic stability conditions for complex-valued recurrent neural networks with an energy function defined on the complex domain have been studied earlier and synthesis of complex-valued associative memories has been realized (Kuroe et al., 2001, 2002). However, studies on their application to global optimization problems and theoretical analysis for global asymptotic stability conditions remain yet-unchallenged topics. The purpose of this chapter is to analyze global asymptotic stability for complex-valued recurrent neural networks. Two types of complex-valued recurrent neural networks are considered: discrete-time model and continuous-time model. We present global asymptotic stability conditions for both models of the complex-valued recurrent neural networks. To ensure global stability, classes of complex-valued functions are defined as the activation functions, and therewith several stability conditions are obtained. According to these conditions, there are classes of discrete-time and continuous-time complex-valued recurrent neural networks whose common equilibrium point is …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

A Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems

In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...

متن کامل

Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design

The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...

متن کامل

Global exponential stability of recurrent neural networks for solving optimization and related problems

Global exponential stability is a desirable property for dynamic systems. This paper studies the global exponential stability of several existing recurrent neural networks for solving linear programming problems, convex programming problems with interval constraints, convex programming problems with nonlinear constraints, and monotone variational inequalities. In contrast to the existing result...

متن کامل

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010